Concepts in Engineering Mathematics: Lecture 39

Part IV: Vector Calculus Lecture 39
Version: 0.94 Dec7.15

Jont B. Allen; UIUC Urbana IL, USA

December 9, 2015

Mathematical Time Line 16-21 CE

Lecture 39: Review of vector field calculus

- Review of last few lectures: Basic definitions
- Field: i.e., Scalar \& vector fields are functions of more than one variable
- "Del:" $\nabla \equiv\left[\partial_{x}, \partial_{y}, \partial_{z}\right]^{T}$
- Gradient: $\nabla \phi(x, y, z) \equiv\left[\partial_{x} \phi, \partial_{y} \phi, \partial_{z} \phi\right]^{T}$
- Helmholtz Theorem:

Every vector field $\boldsymbol{V}(x, y, z)$ may be uniquely decomposed into compressible \& rotational parts

$$
\boldsymbol{V}(x, y, z)=-\nabla \phi(x, y, z)+\nabla \times \boldsymbol{A}(x, y, z)
$$

- Scalar part $\nabla \phi$ is compressible ($\nabla \phi=0$ is incompressible)
- Vector part $\nabla \times \mathbf{A}$ is rotational $(\nabla \times \boldsymbol{A}=0$ is irrotational)
- Key vector identities: $\nabla \times \nabla \phi=0 ; \nabla \cdot \nabla \times \mathbf{A}=0$
- Definitions of Divergence, Curl \& Maxwell's Eqs;
- Closure: Fundamental Theorems of Integral Calculus

Gradient: $\quad \boldsymbol{E}=\nabla \phi(x, y, z)$

- Definition: $\mathbb{R}^{1} \underset{\nabla}{\mapsto} \mathbb{R}^{3}$

$$
\mathbf{E}(x, y, z)=\left[\partial_{x}, \partial_{y}, \partial_{z}\right]^{T} \phi(x, y, z)=\left[\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right]_{x, y, z}^{T}
$$

- $\mathbf{E} \perp$ plane tangent at $\phi(x, y, z)=\phi\left(x_{0}, y_{0}, z_{0}\right)$
- Unit vector in direction of \mathbf{E} is $\hat{\mathbf{n}}=\frac{\mathbf{E}}{\|\mathbf{E}\|}$, along isocline
- Basic definition

$$
\nabla \phi(x, y, z) \equiv \lim _{|\mathcal{S}| \rightarrow 0}\left\{\frac{\iiint \phi(x, y, z) \hat{\mathbf{n}} d A}{|\mathcal{S}|}\right\}
$$

$\hat{\mathbf{n}}$ is a unit vector in the direction of the gradient
\mathcal{S} is the surface area centered at (x, y, z)

Divergence: $\quad \nabla \cdot \boldsymbol{D}=\rho \quad$ 39.14.4a

- Definition: $\mathbb{R}^{3} \underset{\nabla}{\leftrightarrow} \mathbb{R}^{1}$

$$
\nabla \cdot \mathbf{D} \equiv\left[\partial_{x}, \partial_{y}, \partial_{z}\right] \cdot \mathbf{D}=\left[\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right]=\rho(x, y, z)
$$

- Examples:
- Voltage about a point charge Q [SI Units of Coulombs]

$$
\phi(x, y, z)=\frac{Q}{\epsilon_{0} \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{Q}{\epsilon_{0} R}
$$

ϕ [Volts]; $Q=[C] ;$ Free space ϵ_{0} permittivity (μ_{0} permeability)

- Electric Displacement (flux density) around a point charge ($\boldsymbol{D}=\epsilon_{0} \boldsymbol{E}$)

$$
\mathbf{D} \equiv-\nabla \phi(R)=-Q \nabla\left\{\frac{1}{R}\right\}=-Q \delta(R)
$$

Divergence: The integral definition

- Surface integral definition of incompressible vector field

$$
\nabla \cdot \mathbf{D} \equiv \lim _{|\mathcal{S}| \rightarrow 0}\left\{\frac{\iint_{\mathcal{S}} \mathbf{D} \cdot \hat{\mathbf{n}} d A}{|\mathcal{V}|}\right\}=\rho(x, y, z)
$$

\mathcal{S} must be a closed surface
$\hat{\mathbf{n}}$ is the unit vector in the direction of the gradient

- $\hat{\mathbf{n}} \cdot \mathbf{D} \perp$ surface differential $d A$

Divergence: Gauss' Law

- General case of a Compressible vector field
- Volume integral over charge density $\rho(x, y, z)$ is total charge enclosed $Q_{\text {enc }}$

$$
\iiint_{\mathcal{V}} \nabla \cdot \boldsymbol{D} d V=\iint_{\mathcal{S}} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} d A=Q_{e n c}
$$

- Examples
- When the vector field is incompressible
- $\rho(x, y, z)=0\left[C / \mathrm{m}^{3}\right]$ over enclosed volume
- Surface integral is zero $\left(Q_{\text {enc }}=0\right)$
- Unit point charge: $D=\delta(R)\left[C / \mathrm{m}^{2}\right]$

Curl: $\quad \nabla \times \mathbf{H}=\mathbf{I}\left[\mathrm{amps} / \mathrm{m}^{2}\right]$

- Definition: $\mathbb{R}^{3} \underset{\nabla \times}{\mapsto} \mathbb{R}^{3}$

$$
\nabla \times \mathbf{H} \equiv\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
H_{x} & H_{y} & H_{z}
\end{array}\right|=\mathbf{I}
$$

- Examples:
- Maxwell's equations: $\nabla \times \mathbf{E}=-\dot{\mathbf{B}}, \nabla \times \mathbf{H}=\sigma \mathbf{E}+\dot{\mathbf{D}}$,
- $\mathbf{H}=-y \hat{x}+x \hat{y}$ then $\nabla \times \mathbf{H}=2 \hat{z}$ constant irrotational
- $\mathbf{H}=0 \hat{x}+0 \hat{y}+z^{2} \hat{z}$ then $\nabla \times \mathbf{H}=\mathbf{0}$ is irrotational

Curl: Stokes Law

- Surface integral definition of $\nabla \times \mathbf{H}=\mathbf{I} \quad(\boldsymbol{I} \perp$ rotation plane of $\boldsymbol{H})$

$$
\begin{align*}
& \nabla \times \mathbf{H} \equiv \lim _{|\mathcal{S}| \rightarrow 0}\left\{\frac{\iint_{\mathcal{S}} \hat{\mathbf{n}} \times \mathbf{H} d A}{|\mathcal{S}|}\right\} \tag{1}\\
& \mathcal{I}_{\text {enc }}=\iint(\nabla \times \mathbf{H}) \cdot \hat{\boldsymbol{n}} d A=\oint_{\mathcal{B}} \mathbf{H} \cdot d \boldsymbol{l} \tag{2}
\end{align*}
$$

- Eq. (1): \mathcal{S} must be an open surface with closed boundary \mathcal{B} $\hat{\mathbf{n}}$ is the unit vector \perp to $d A$ $\boldsymbol{H} \times \hat{\boldsymbol{n}} \in$ Tangent plane of A (i.e., $\perp \hat{\boldsymbol{n}}$)
- Eq. (2): Stokes Law: Line integral of \boldsymbol{H} along \mathcal{B} is total current $\mathcal{I}_{\text {enc }}$

Closure: Properties of fields of Maxwell's Equations 39.14.6

The variables have the following names and defining equations:

Symbol	Equation	Name	Units
\mathbf{E}	$\nabla \times \mathbf{E}=-\mathbf{B}$	Electric Field strength	$[$ Volts $/ \mathrm{m}]$
\mathbf{D}	$\nabla \cdot \mathbf{D}=\rho$	Electric Displacement (flux density)	$\left[\mathrm{Col} / \mathrm{m}^{2}\right]$
\mathbf{H}	$\nabla \times \mathbf{H}=\dot{\mathbf{D}}$	Magnetic Field strength	$[\mathrm{Amps} / \mathrm{m}]$
\mathbf{B}	$\nabla \cdot \mathbf{B}=0$	Magnetic Induction (flux density)	$\left[\right.$ Weber $\left./ \mathrm{m}^{2}\right]$

$$
\text { In vacuo } \boldsymbol{B}=\mu_{0} \boldsymbol{H}, \boldsymbol{D}=\epsilon_{0} \boldsymbol{E}, \boldsymbol{c}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}[\mathrm{~m} / \mathrm{s}], r_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377[\Omega] \text {. }
$$

Closure: Summary of vector field properties

- Notation:

$$
\boldsymbol{v}(x, y, z)=-\nabla \phi(x, y, z)+\nabla \times \boldsymbol{w}(x, y, z)
$$

- Vector identities:

$$
\nabla \times \nabla \phi=0 ; \quad \nabla \cdot \nabla \times \mathbf{w}=0
$$

Field type	Generator:	Test (on \boldsymbol{v}):
Irrotational	$\boldsymbol{v}=\nabla \phi$	$\nabla \times \boldsymbol{v}=0$
Rotational	$\boldsymbol{v}=\nabla \times \boldsymbol{w}$	$\nabla \times \mathbf{v}=\boldsymbol{J}$
Incompressible	$\boldsymbol{v}=\nabla \times \boldsymbol{w}$	$\nabla \cdot \boldsymbol{v}=0$
Compressible	$\boldsymbol{v}=\nabla \phi$	$\nabla \cdot \boldsymbol{v}=\rho$

- Source density terms: Current: J(x,y,z), Charge: $\rho(x, y, z)$
- Examples: $\nabla \times \boldsymbol{H}=\dot{\boldsymbol{D}}(x, y, z), \nabla \cdot D=\rho(x, y, z)$
(1) $f(x) \in \mathbb{R}$ (Leibniz Integral Rule): $F(x)=F(a)+\int_{a}^{x} f(x) d x$
(2) $f(s) \in \mathbb{C}$ (Cauchy's formula): $F(s)=F(a)+\int_{a}^{s} f(\zeta) d \zeta$ -When integral is independent of path, $F(s) \in \mathbb{C}$ obeys $C R$ conditions -Contour integration inverts causal Laplace transforms
(3) $\boldsymbol{F} \in \mathbb{R}^{3}$ (Helmholtz Formula): $\boldsymbol{F}(x, y, z)=-\nabla \phi(x, y, z)+\nabla \times \boldsymbol{A}(x, y, z)$ -Decompose $\boldsymbol{F}(x, y, z)$ as compressible and rotational
(3) Gauss' Law (Divergence Theorem): $Q_{\text {enc }}=\iiint \nabla \cdot \boldsymbol{D} d V=\iint_{\mathcal{S}} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} d A$ -Surface integral describes enclosed compressible sources
(5) Stokes' Law (Curl Theorem): $\mathcal{I}_{\text {enc }}=\iint(\nabla \times \mathbf{H}) \cdot \hat{\boldsymbol{n}} d A=\oint_{\mathcal{B}} \mathbf{H} \cdot d \boldsymbol{I}$ -Boundary vector line integral describes enclosed rotational sources
(0) Green's Theorem ... Two-port boundary conditions -Reciprocity property (Theory of Sound, Rayleigh, J.W.S., 1896)

Closure: Quasistatic (QS) approximation

- Definition: $k a \ll 1$ where a is the size of object, $\lambda=c / f$ wavelength
- This is equivalent to $a \ll \lambda$ or
- $\omega \ll c / a$ which is a low-frequency approximation
- The QS approximation is widely used, but infrequently identified.
- All lumpted parameter models (inductors, capacitors) are based on QS approximation as the lead term in a Taylor series approximation.

