Concepts in Engineering Mathematics: Lecture 39

Part IV: Vector Calculus Lecture 39 Version: 0.94 Dec7.15

Jont B. Allen; UIUC Urbana IL, USA

December 9, 2015

39.14.1

Lecture 39: Review of vector field calculus 39.14.2

• Review of last few lectures: Basic definitions

• Field: i.e., Scalar & vector fields are functions of more than one variable

• "Del:"
$$\nabla \equiv [\partial_x, \partial_y, \partial_z]^T$$

- Gradient: $\nabla \phi(x, y, z) \equiv [\partial_x \phi, \ \partial_y \phi, \ \partial_z \phi]^T$
- Helmholtz Theorem:

Every vector field V(x, y, z) may be uniquely decomposed into *compressible* & *rotational* parts

$$V(x,y,z) = -\nabla \phi(x,y,z) + \nabla \times A(x,y,z)$$

- Scalar part $\nabla \phi$ is compressible ($\nabla \phi = 0$ is incompressible)
- Vector part $\nabla \times \mathbf{A}$ is rotational ($\nabla \times \mathbf{A} = 0$ is irrotational)
- Key vector identities: $\nabla \times \nabla \phi = 0$; $\nabla \cdot \nabla \times \mathbf{A} = 0$
- Definitions of Divergence, Curl & Maxwell's Eqs;
- Closure: Fundamental Theorems of Integral Calculus

Gradient: $\boldsymbol{E} = \nabla \phi(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ 39.14.3

• Definition: $\mathbb{R}^1 \xrightarrow{}_{\nabla} \mathbb{R}^3$

$$\mathbf{E}(x, y, z) = [\partial_x, \partial_y, \partial_z]^T \phi(x, y, z) = \left[\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right]_{x, y, z}^T$$

- **E** \perp plane tangent at $\phi(x, y, z) = \phi(x_0, y_0, z_0)$
- Unit vector in direction of **E** is $\hat{\mathbf{n}} = \frac{\mathbf{E}}{||\mathbf{E}||}$, along *isocline*
- Basic definition

$$\nabla \phi(x, y, z) \equiv \lim_{|\mathcal{S}| \to 0} \left\{ \frac{\iint \phi(x, y, z) \,\hat{\mathbf{n}} \, dA}{|\mathcal{S}|} \right\}$$

 $\hat{\mathbf{n}}$ is a unit vector in the direction of the gradient S is the surface area centered at (x, y, z)

Divergence: $\nabla \cdot \boldsymbol{D} = \rho$ 39.14.4a

• Definition: $\mathbb{R}^3 \underset{\nabla}{\mapsto} \mathbb{R}^1$

$$\nabla \cdot \mathbf{D} \equiv [\partial_x, \, \partial_y, \, \partial_z] \cdot \mathbf{D} = \left[\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} \right] = \rho(x, y, z)$$

- Examples:
 - Voltage about a point charge Q [SI Units of Coulombs]

$$\phi(x, y, z) = \frac{Q}{\epsilon_0 \sqrt{x^2 + y^2 + z^2}} = \frac{Q}{\epsilon_0 R}$$

 ϕ [Volts]; Q = [C]; Free space ϵ_0 permittivity (μ_0 permeability)

• Electric Displacement (flux density) around a point charge $(D = \epsilon_0 E)$

$$\mathbf{D}\equiv -
abla \phi(R)=-Q
abla \left\{rac{1}{R}
ight\}=-Q\,\delta(R)$$

Divergence: The integral definition 39.14.4b

• Surface integral definition of incompressible vector field

$$\nabla \cdot \mathbf{D} \equiv \lim_{|\mathcal{S}| \to 0} \left\{ \frac{\iint_{\mathcal{S}} \mathbf{D} \cdot \hat{\mathbf{n}} \, dA}{|\mathcal{V}|} \right\} = \rho(x, y, z)$$

 ${\cal S}$ must be a closed surface ${\bf \hat{n}}$ is the unit vector in the direction of the gradient

• $\hat{\mathbf{n}} \cdot \mathbf{D} \perp$ surface differential dA

6 / 13

Divergence: Gauss' Law

39.14.4c

- General case of a Compressible vector field
- Volume integral over charge density ρ(x, y, z) is total charge enclosed Q_{enc}

$$\iiint_{\mathcal{V}} \nabla \cdot \boldsymbol{D} \, dV = \iint_{\mathcal{S}} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} \, dA = Q_{enc}$$

Examples

- When the vector field is *incompressible*
 - $\rho(x, y, z) = 0 [C/m^3]$ over enclosed volume
 - Surface integral is zero ($Q_{enc} = 0$)
- Unit point charge: $D = \delta(R) [C/m^2]$

Curl: $\nabla \times \mathbf{H} = \mathbf{I} \; [\text{amps}/\text{m}^2]$ 39.14.5a

• Definition: $\mathbb{R}^3 \underset{\nabla \times}{\mapsto} \mathbb{R}^3$

$$\nabla \times \mathbf{H} \equiv \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial_{x} & \partial_{y} & \partial_{z} \\ H_{x} & H_{y} & H_{z} \end{vmatrix} = \mathbf{I}$$

• Examples:

- Maxwell's equations: $\nabla \times \mathbf{E} = -\dot{\mathbf{B}}, \ \nabla \times \mathbf{H} = \sigma \mathbf{E} + \dot{\mathbf{D}},$
- $\mathbf{H} = -y\hat{x} + x\hat{y}$ then $\nabla \times \mathbf{H} = 2\hat{z}$ constant *irrotational*
- $\mathbf{H} = 0\hat{x} + 0\hat{y} + z^2\hat{z}$ then $\nabla \times \mathbf{H} = \mathbf{0}$ is irrotational

Curl: Stokes Law

39.14.5b

• Surface integral definition of $\nabla \times \mathbf{H} = \mathbf{I}$ ($\mathbf{I} \perp$ rotation plane of \mathbf{H})

- Eq. (1): S must be an open surface with closed boundary B **n̂** is the unit vector ⊥ to dA **H**×**n̂** ∈ Tangent plane of A (i.e., ⊥ **n̂**)
- Eq. (2): Stokes Law: Line integral of H along \mathcal{B} is total current \mathcal{I}_{enc}

Closure: Properties of fields of Maxwell's Equations 39.14.6

The variables have the following names and defining equations:

Symbol	Equation	Name	Units
E	$ abla imes \mathbf{E} = -\dot{\mathbf{B}}$	Electric Field strength	[Volts/m]
D	$\nabla\cdot \mathbf{D}=\rho$	Electric Displacement (flux density)	[Col/m ²]
н	$ abla imes \mathbf{H} = \dot{\mathbf{D}}$	Magnetic Field strength	[Amps/m]
В	$ abla \cdot {f B} = 0$	Magnetic Induction (flux density)	$[Weber/m^2]$

In vacuo
$$\boldsymbol{B} = \mu_0 \boldsymbol{H}$$
, $\boldsymbol{D} = \epsilon_0 \boldsymbol{E}$, $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ [m/s], $r_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377$ [Ω].

Closure: Summary of vector field properties 39.14.7

• Notation:

$$\mathbf{v}(x,y,z) = -\nabla \phi(x,y,z) + \nabla \times \mathbf{w}(x,y,z)$$

• Vector identities:

$$abla imes
abla \phi =$$
 0; $abla \cdot
abla imes \mathbf{w} =$ 0

Field type	Generator:	Test (on v):
Irrotational	$oldsymbol{v}= abla\phi$	$ abla imes \mathbf{v} = 0$
Rotational	$oldsymbol{v} = abla imes oldsymbol{w}$	$ abla imes oldsymbol{v} = oldsymbol{J}$
Incompressible	$oldsymbol{v}= abla imesoldsymbol{w}$	$ abla \cdot oldsymbol{ u} = 0$
Compressible	$\mathbf{v}= abla\phi$	$ abla \cdot \mathbf{v} = ho$

Source density terms: Current: J(x, y, z), Charge: ρ(x, y, z)
 Examples: ∇×H = D(x, y, z), ∇·D = ρ(x, y, z)

٦

- $f(x) \in \mathbb{R}$ (Leibniz Integral Rule): $F(x) = F(a) + \int_a^x f(x) dx$
- f(s) ∈ C (Cauchy's formula): F(s) = F(a) + ∫_a^s f(ζ)dζ
 -When integral is independent of path, F(s) ∈ C obeys CR conditions
 -Contour integration inverts causal Laplace transforms
- **3** $\boldsymbol{F} \in \mathbb{R}^3$ (Helmholtz Formula): $\boldsymbol{F}(x, y, z) = -\nabla \phi(x, y, z) + \nabla \times \boldsymbol{A}(x, y, z)$ -Decompose $\boldsymbol{F}(x, y, z)$ as compressible and rotational
- Gauss' Law (Divergence Theorem): $Q_{enc} = \iiint \nabla \cdot \boldsymbol{D} \, dV = \iint_{\mathcal{S}} \boldsymbol{D} \cdot \hat{\boldsymbol{n}} \, dA$ -Surface integral describes enclosed compressible sources
- Stokes' Law (Curl Theorem): $\mathcal{I}_{enc} = \iint (\nabla \times \mathbf{H}) \cdot \hat{\mathbf{n}} \, dA = \oint_{\mathcal{B}} \mathbf{H} \cdot d\mathbf{I}$ -Boundary vector line integral describes enclosed rotational sources
- Green's Theorem ... Two-port boundary conditions
 –Reciprocity property (*Theory of Sound*, Rayleigh, J.W.S., 1896)

Closure: Quasistatic (QS) approximation 39.14.9

- Definition: $ka \ll 1$ where a is the size of object, $\lambda = c/f$ wavelength
- This is equivalent to $a\ll\lambda$ or
- $\omega \ll c/a$ which is a low-frequency approximation
- The QS approximation is widely used, but infrequently identified.
- All *lumpted parameter models* (inductors, capacitors) are based on QS approximation as the lead term in a Taylor series approximation.