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Lecture 39: Review of vector field calculus 39.14.2

Review of last few lectures: Basic definitions
Field: i.e., Scalar & vector fields are functions of more than one variable
“Del:” ∇ ≡ [∂x , ∂y , ∂z ]T

Gradient: ∇φ(x , y , z) ≡ [∂x φ, ∂y φ, ∂zφ]T

Helmholtz Theorem:

Every vector field V (x , y , z) may be uniquely decomposed into
compressible & rotational parts

V (x , y , z) = −∇φ(x , y , z) + ∇×A(x , y , z)

Scalar part ∇φ is compressible (∇φ = 0 is incompressible)

Vector part ∇×A is rotational (∇×A = 0 is irrotational)

Key vector identities: ∇×∇φ = 0; ∇ · ∇×A = 0

Definitions of Divergence, Curl & Maxwell’s Eqs;

Closure: Fundamental Theorems of Integral Calculus
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Gradient: E = ∇φ(x , y , z) 39.14.3

Definition: R
1 7→

∇
R

3

E(x , y , z) = [∂x , ∂y , ∂z ]T φ(x , y , z) =

[

∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

]T

x ,y ,z

E ⊥ plane tangent at φ(x , y , z) = φ(x0, y0, z0)

Unit vector in direction of E is n̂ = E

||E|| , along isocline

Basic definition

∇φ(x , y , z) ≡ lim
|S|→0

{

∫∫∫

φ(x , y , z) n̂ dA

|S|

}

n̂ is a unit vector in the direction of the gradient
S is the surface area centered at (x , y , z)
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Divergence: ∇·D = ρ 39.14.4a

Definition: R
3 7→

∇·
R

1

∇·D ≡ [∂x , ∂y , ∂z ] · D =

[

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

]

= ρ(x , y , z)

Examples:

Voltage about a point charge Q [SI Units of Coulombs]

φ(x , y , z) =
Q

ǫ0

√

x2 + y2 + z2
=

Q

ǫ0R

φ [Volts]; Q = [C]; Free space ǫ0 permittivity (µ0 permeability)
Electric Displacement (flux density) around a point charge (D = ǫ0E)

D ≡ −∇φ(R) = −Q∇

{

1

R

}

= −Q δ(R)
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Divergence: The integral definition 39.14.4b

Surface integral definition of incompressible vector field

∇·D ≡ lim
|S|→0

{

∫∫

S D · n̂ dA

|V|

}

= ρ(x , y , z)

S must be a closed surface
n̂ is the unit vector in the direction of the gradient

n̂ · D ⊥ surface differential dA
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Divergence: Gauss’ Law 39.14.4c

General case of a Compressible vector field

Volume integral over charge density ρ(x , y , z) is total charge enclosed
Qenc

∫∫∫

V
∇·D dV =

∫∫

S
D ·n̂ dA = Qenc

Examples
When the vector field is incompressible

ρ(x , y , z) = 0 [C/m3] over enclosed volume
Surface integral is zero (Qenc = 0)

Unit point charge: D = δ(R) [C/m2]
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Curl: ∇×H = I [amps/m2] 39.14.5a

Definition: R
3 7→

∇×
R

3

∇×H ≡

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

∂x ∂y ∂z

Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

= I

Examples:

Maxwell’s equations: ∇×E = −Ḃ, ∇×H = σE + Ḋ,
H = −y x̂ + xŷ then ∇×H = 2ẑ constant irrotational

H = 0x̂ + 0ŷ + z2ẑ then ∇×H = 0 is irrotational
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Curl: Stokes Law 39.14.5b

Surface integral definition of ∇×H = I (I ⊥ rotation plane of H)

n̂ ⊥ dA

S Area (open)

B Boundarydl

∇×H ≡ lim
|S|→0

{

∫∫

S n̂ × H dA

|S|

}

(1)

Ienc =

∫∫

(∇×H) ·n̂ dA =

∮

B
H·d l

(2)

Eq. (1): S must be an open surface

with closed boundary B
n̂ is the unit vector ⊥ to dA

H×n̂ ∈ Tangent plane of A (i.e., ⊥ n̂)

Eq. (2): Stokes Law: Line integral of H along B is total current Ienc
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Closure: Properties of fields of Maxwell’s Equations 39.14.6

The variables have the following names and defining equations:

Symbol Equation Name Units

E ∇ × E = −Ḃ Electric Field strength [Volts/m]
D ∇ · D = ρ Electric Displacement (flux density) [Col/m2]

H ∇ × H = Ḋ Magnetic Field strength [Amps/m]
B ∇ · B = 0 Magnetic Induction (flux density) [Weber/m2]

In vacuo B = µ0H, D = ǫ0E , c = 1√
µ0ǫ0

[m/s], r0 =
√

µ0
ǫ0

= 377 [Ω].

Jont B. Allen; UIUC Urbana IL, USA Concepts in Engineering Mathematics: Lecture 39 December 9, 2015 10 / 13



Closure: Summary of vector field properties 39.14.7

Notation:
v(x , y , z) = −∇φ(x , y , z) + ∇×w(x , y , z)

Vector identities:
∇×∇φ = 0; ∇ · ∇×w = 0

Field type Generator: Test (on v):

Irrotational v = ∇φ ∇ × v = 0
Rotational v = ∇×w ∇ × v = J

Incompressible v = ∇ × w ∇ · v = 0
Compressible v = ∇φ ∇ · v = ρ

Source density terms: Current: J(x , y , z), Charge: ρ(x , y , z)

Examples: ∇×H = Ḋ(x , y , z), ∇·D = ρ(x , y , z)
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Closure: Fundamental Theorems of integral calculus: 39.14.8

1 f (x) ∈ R (Leibniz Integral Rule): F (x) = F (a) +
∫ x

a f (x)dx

2 f (s) ∈ C (Cauchy’s formula): F (s) = F (a) +
∫ s

a f (ζ)dζ
–When integral is independent of path, F (s) ∈ C obeys CR conditions
–Contour integration inverts causal Laplace transforms

3 F ∈ R
3 (Helmholtz Formula): F (x , y , z) = −∇φ(x , y , z) + ∇×A(x , y , z)

–Decompose F (x , y , z) as compressible and rotational

4 Gauss’ Law (Divergence Theorem): Qenc =
∫∫∫

∇·D dV =
∫∫

S
D ·n̂ dA

–Surface integral describes enclosed compressible sources

5 Stokes’ Law (Curl Theorem): Ienc =
∫∫

(∇×H)·n̂ dA =
∮

B H·d l

–Boundary vector line integral describes enclosed rotational sources

6 Green’s Theorem . . . Two-port boundary conditions
–Reciprocity property (Theory of Sound, Rayleigh, J.W.S., 1896)
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Closure: Quasistatic (QS) approximation 39.14.9

Definition: ka ≪ 1 where a is the size of object, λ = c/f wavelength

This is equivalent to a ≪ λ or

ω ≪ c/a which is a low-frequency approximation

The QS approximation is widely used, but infrequently identified.

All lumpted parameter models (inductors, capacitors) are based on
QS approximation as the lead term in a Taylor series approximation.
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